

www.epa.gov/airscience

AIR CLIMATE & ENERGY RESEARCH PROGRAM

BUILDING A SCIENTIFIC FOUNDATION FOR SOUND ENVIRONMENTAL DECISIONS

2014 National Ambient Air Monitoring Conference

Performance Evaluation of a Lower-Cost, Real-Time Community Air Monitoring Station

Wan Jiao¹, Gayle Hagler², Ron Williams², Bobby Sharpe³, Lewis Weinstock⁴, Joann Rice⁴

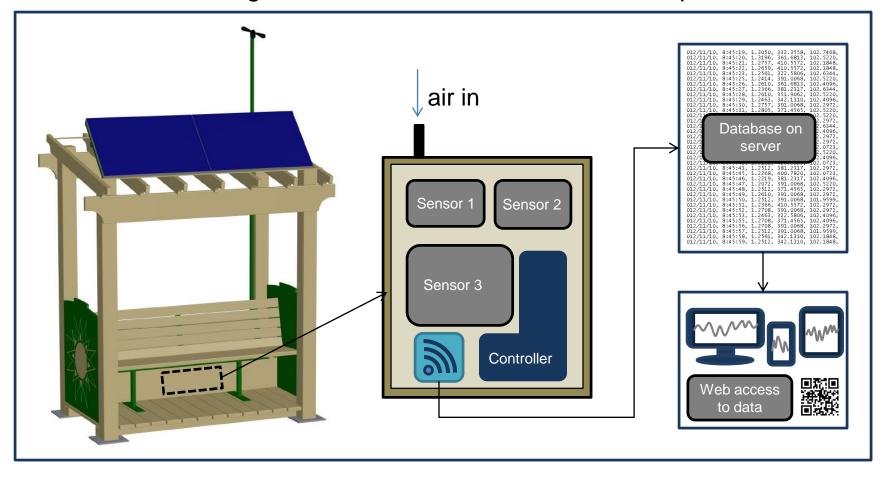
¹Student Services Contractor, U.S. EPA Office of Research and Development ²U.S. EPA Office of Research and Development ³ARCADIS U.S., Inc.

⁴U.S. EPA Office of Air Quality Planning and Standards

Introduction

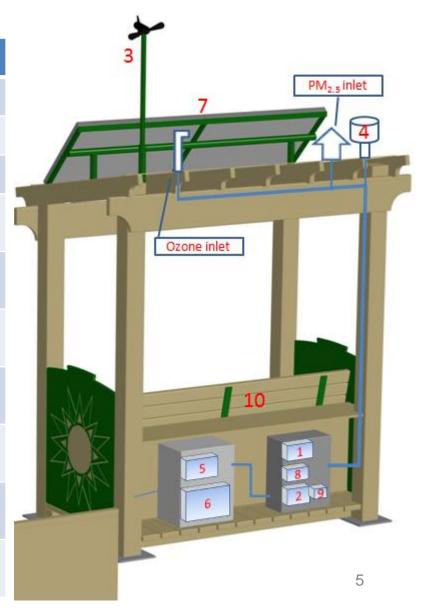
- A need for technologies that provide information to engage the community for local air quality
- Limitation in traditional air monitoring due to cost and logistical issues
- EPA's Village Green Project (VGP) seeks to address the technology gap by designing a proof-of-concept air monitor prototype

Village Green Project (VGP): Vision and design



- Lower cost to install and run: sustainable, self-powered, minimum maintenance
- Provides real-time data: one minute data rate, automated quality checks
- Engages the community: in a community environment
- Accessible data and information: publically available on a website

VGP Schematic


Key constraints: physical footprint, power, instrumentation that can withstand no heating or A/C, minimize cost to the extent possible

System components

No.	Component (model)	Manufacturer
1	PM monitor (pDR-1500)	Thermo Scientific
2	Ozone monitor (OEM-106)	2B Technologies
3	Wind sensor (09101)	RM Young
4	Humidity and temperature sensor (HMP60)	Vaisala
5	Power controller (Sunsaver SS-10L-12V)	Morningstar
6	AGM battery (WKDC12-80P, 12V, 80Ah)	Werker
7	Solar panel (SLP085-12MKCT, 85W, 12 VDC)	Solarland
8	Microprocessor (Arduino Mega 2560)	Arduino
9	Cellular router (Airlink Raven XE)	Sierra Wireless
10	Bench structure	Safeplay Systems

Data transmission

Public website updated minute-by-minute https://villagegreen.epa.gov/

Data transmission

Behind the scenes – admin viewing page, real-time QA checks of instruments, raw data for download

	Ozon	e dat	a d	iagn	ostic (data	PM	data		diag	ınost ⊥	ic da	ta		N	√et da	ata dia	agnostic data
	1	•					•				_							•
MeasurementDate			O3_Temp C	_			_	DR_Tem; PD	_	PDR_Pres	_		ARD_STAT		AmbRH		WindDirection	ComponentStatus
6/22/2013 0:00	1.1	38.1	37.5	871	1.139	725.2	5.88	39	17	763	38.76	20.26	4	TRUE	57.5		196	
6/22/2013 0:01	8.0			905	1.139	725.4	5.3	39	17	763	38.77	20.19	4	TRUE	57.8		207	
6/22/2013 0:02	0	37.3		898	1.138	725.2	5.35	39	17	763	38.75	20.26	4	TRUE	58		165	
6/22/2013 0:03	0.3	35.6		896	1.138	725.3	4.98	39	17	763	38.7	20.33	4	TRUE	58		206	
6/22/2013 0:04	Ü	36.6		889	1.138	725.1	5.47	39	17	763	38.68	20.44	4	TRUE	57.9		192	
6/22/2013 0:05	0	37.3		893	1.138	725	4.84	39	17	763	38.67	20.55	4	TRUE	58.2	26.7	208	
6/22/2013 0:06	Ü	35.8		882	1.137	725	5.39	38.9	18	763	38.64	20.65	4	TRUE	58.5		318	
6/22/2013 0:07	0	36.4		892	1.137	725	5.4	39	17	763	38.64	20.69	4	TRUE	58.1	26.6	90	
6/22/2013 0:08	0.7	36		868	1.137	725.1	5.3	38.9	17	763	38.6	20.76	4	TRUE	57.8		224	
6/22/2013 0:09	0.4	37.2		897	1.137	725.1	5.22 5.59	38.9	17	763	38.58	20.83	4	TRUE	57.8		172 193	
6/22/2013 0:10	0.4	34.8		933	1.136	725.2		38.9	17	763	38.58	20.83	4	TRUE	58.9		193	
6/22/2013 0:11	0	36.4		894	1.136	725.1 725.1	4.92 5.86	38.9	18	763	38.59	20.83		TRUE	59.2	26.4 26.3	193	
6/22/2013 0:12 6/22/2013 0:13	0.4	36.1 37.8		881 862	1.136 1.135	725.1	5.14	38.9 38.8	18 17	763 763	38.56 38.55	20.94	4	TRUE	59.1 58.5	26.4	214	
6/22/2013 0:14	0.4	37.0		870	1.135	725.1	5.28	38.9	18	763	38.53	20.94	4	TRUE	59		214	
6/22/2013 0:15	0.5	34		901	1.135	725.1	5.39	38.8	18	763	38.54	20.97	4	TRUE	59.8		159	
6/22/2013 0:16		34.7	37.3	872	1.135	725.1	5.44	38.8	18	763	38.52	21.08	4	TRUE	59.2		174	
6/22/2013 0:17	0.7	34.7		880	1.135	725.1	5.15	38.8	18	763	38.48	21.12	4	TRUE	59.8		155	
6/22/2013 0:17	0.3	30.7	37.2	867	1.134	725.1	5.45	38.8	18	763	38.48	21.12	4	TRUE	61.3		180	
6/22/2013 0:19	0.8			906	1.134	725.1	5.19	38.8	18	763	38.48	21.12	4	TRUE	60.5	25.8	178	
6/22/2013 0:20	0.6			903	1.134	725.1	5.6	388	18	76	38.45	21.19	4	TRUE	60		189	
6/22/2013 0:21	0.4	34.3		893	1.134	725.1	5.7	38.8	18	763	38.44	21.19	4	TRUE	60.2	26	141	
6/22/2013 0:22	0.1	31.3		873	1.133	725.1	5.87	38.8	18	763	38.44	21.19	4	TRUE	60.9		138	
6/22/2013 0:23	0	32.4		868	1.133	725.1	5.35	38.8	18	763	38.43	21.26	4	TRUE	61.1	25.9	138	
6/22/2013 0:24	0	31.4		887	1.133	725.1	5.16	38.8	18	763	38.41	21.33	4	TRUE	61.4	25.9	251	
6/22/2013 0:25	0.6			888	1.133	725.1	5.69	38.7	18	763	38.38	21.36	4	TRUE	60.9		213	
6/22/2013 0:26	0.1			894	1.133	725.1	5.5	38.7	18	763	38.37	21.4	4	TRUE	60.7	25.8	180	
6/22/2013 0:27	0.0	32.1	37.1	895	1.132	725	5.61	38.7	18	763	38.33	21.47	4	TRUE	60.6		208	
6/22/2013 0:28	0.1	33.3		896	1.132	725	5.93	38.7	18	763	38.32	21.54	4	TRUE	61.8		232	
6/22/2013 0:29	C	31		912	1.132	725	5.88	38.7	18	763	38.29	21.54	4	TRUE	61.5		90	
6/22/2013 0:30	C	31.5	37.1	903	1.132	725	5.82	38.6	18	763	38.28	21.65	4	TRUE	62.1		227	
6/22/2013 0:31	C	31.7	37.1	899	1.131	725	5.93	38.6	18	763	38.28	21.69	4	TRUE	62.4	25.5	226	
6/22/2013 0:32	C	29		892	1.131	725.1	5.92	38.6	18	763	38.27	21.68	4	TRUE	63	25.4	227	
6/22/2013 0:33	C	28.8		939	1.131	725	5.32	38.6	19	763	38.25	21.72	4	TRUE	63.9		179	
E/22/2012 0.24			27	001	1 1 2 1	725	E 17	20 €	10	760	20 22	24.02	1	TDLIE	62.4		274	27

EPA and Durham County signed Memorandum of Understanding supporting station placement and educational outreach

System installation in June 2013

Sign next to station with information on the air monitoring project, explanation of the Air Quality Index, QR code for smartphones to easily connect to website

Ribbon-cutting ceremony in June, 2013

Library also participating in School Flag Program

Outreach events at the library:

Review of system performance (June 2013-March 2014)

Goals:

- (1) Evaluate the long-term operability of the VGP system
- (2) Compare the pollutant concentrations measured by the VGP system with nearby ambient monitoring stations
- (3) Assess the potential for measurement artifacts due to meteorological conditions

System performance

- Power system provided sufficient power for ~95% operation over 10 months of data analyzed thus far (June 2013 through March 2014)
- Other causes of data collection interruption:
 - Communications resolved initial challenges with Arduino to EPA server data transmission
 - Instrument maintenance or calibration PM pump replacement approximately every 6 months, ozone instrument cleaning at 6 months mark

System performance

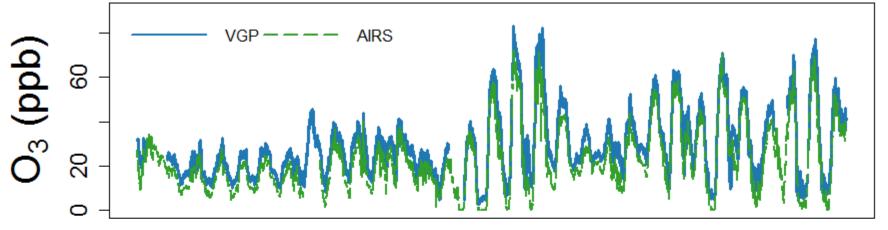
	Missing	data (%) p	er month c	Overall completeness ^a (%)				
	Quality ch		Low solar	Comm.				
	maintenance		power	interruptions				
Month	Ozone	PM _{2.5}			Ozone	PM _{2.5}	Wind	Temp/RH
2013/06	0	0	0	4	96	96	96	96
2013/07	0	0	0	7	93	93	93	93
2013/08	0	0	0	0	100	100	100	100
2013/09	0	1	0	0	100	99	100	100
2013/10	0	59 b	17	0	83	24	83	83
2013/11	0	1	3	31	66	65	66	66
2013/12	43 b	1	11	10	36	79	79	79
2014/01	28 b	2	1	2	70	96	97	97
2014/02	9	8	9	0	82	83	91	91
2014/03	8	4	3	6	83	87	91	91

Solar panels provided sufficient power to operate ~94.5% of the time

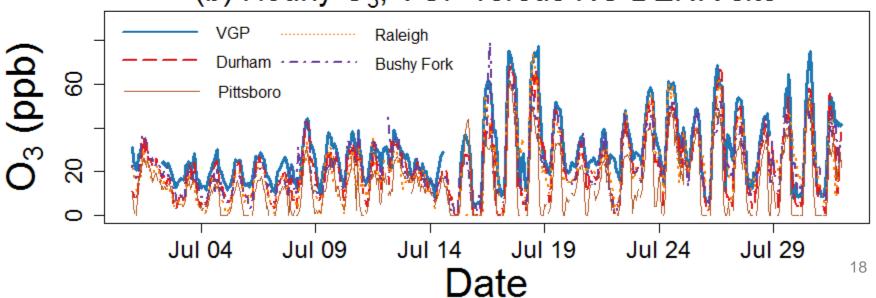
Data comparison with surrounding federal equivalent method (FEM) instrumentation

EPA-RTP AIRS site (~1 mile away)

Data comparison with surrounding federal equivalent method (FEM) instrumentation

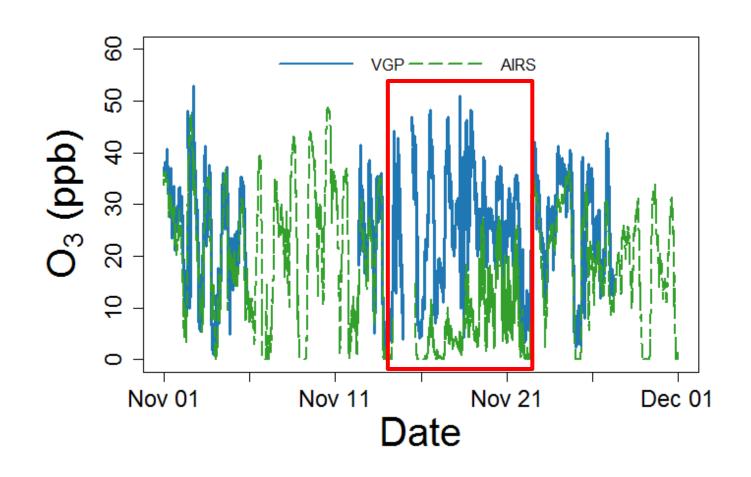

Project VGP and Other Nearby Instrumentation

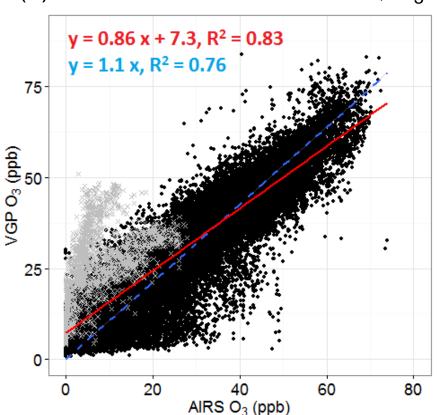
Location (Data owner)	Measurement	Instrument(s)		
Village Green Project	Ozone	2B Technologies, OEM-106		
(VGP)	PM _{2.5}	Thermo Scientific, MIE pDR-1500		
EPA-RTP campus	Ozone	Teledyne T265		
(OAQPS)	PM _{2.5}	GRIMM180		
Millbrook (NC DENR)	Ozone	Thermo Environmental 49C		
	PM _{2.5}	MetOne BAM 1020		
Durham (NC DENR)	Ozone	Thermo Environmental 49C		
	PM _{2.5}	R&P TEOM 1400AB		
Pittsboro (NC DENR)	Ozone	Thermo Environmental 49C		
Bushy Fork (NC DENR)	Ozone	Thermo Environmental 49C		

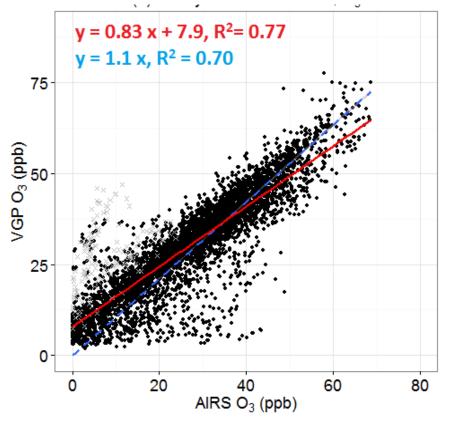


Ozone Concentration Comparison

(a) 5-minute O₃, VGP versus AIRS site

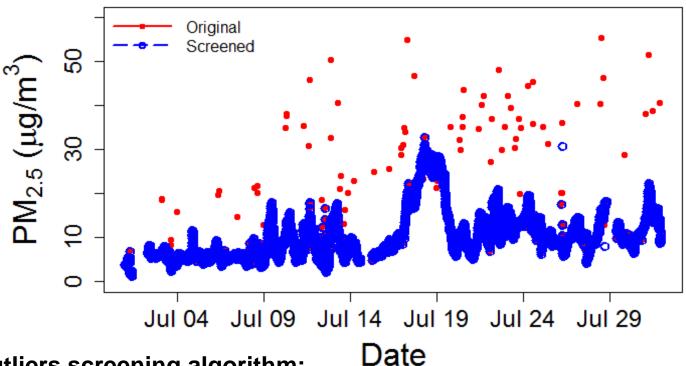



Deviation of 5-minute Average Ozone Concentration



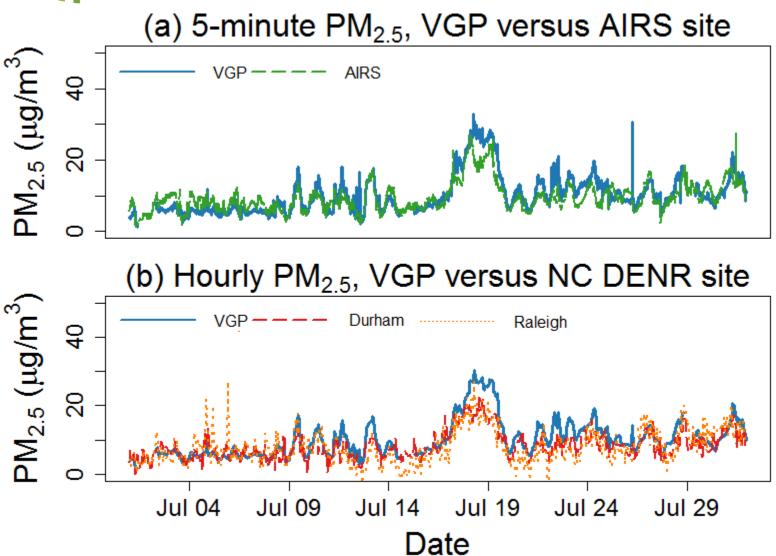
Ozone Concentration Correlation

(a) 5-minute VGP versus AIRS, O₃


(b) Hourly VGP versus AIRS, O₃

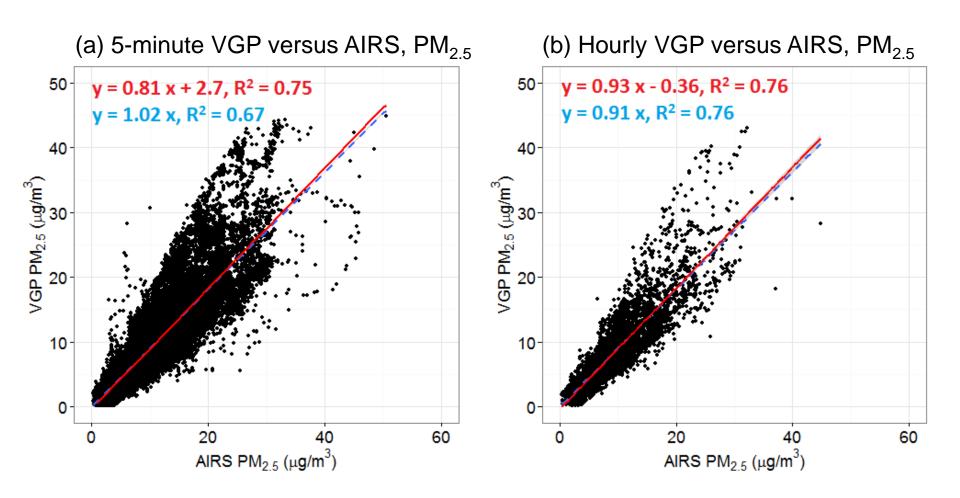
When the one period of apparent deviation (~7 total days over November) were isolated from analysis (grey x marks), the R² increases to 0.86 and 0.81 at 5-minute and hourly intervals, respectively.

PM_{2.5} comparison – local exhaust flagged for removal


PM_{2.5} outliers screening algorithm:

```
for (i in 2:length(PM){
  if (PM[i] - PM[i-1] >= abs(15)){
    PM[i] <- "Flagged"
  }
}</pre>
```

Total removed minute PM_{2.5} data: 0.32%



PM_{2.5} Concentration Comparison

PM_{2.5} Concentration Correlation

Effects of temperature (T) and relative humidity (RH)

Linear regress model:

$$C_{VGP} = \beta_1 + \beta_2 C_{AIRS} + \beta_3 T + \beta_4 RH$$

Explanatory	5-minute average VGP concentration						
variables	(Ozone ^a	PM _{2.5} b				
	Estimate	Standard error	Estimate	Standard error			
AIRS concentration	0.81	0.0022	0.91	0.0021			
Temperature	0.20	0.0027	0.14	0.0011			
Relative humidity	- 0.011	0.0015	- 0.0049	0.00053			
Intercept	6.0	0.14	- 1.9	0.039			

- a. $R^2 = 0.84$, all p-values are significant at 0.001 level.
- b. $R^2 = 0.81$, all p-values are significant at 0.001 level.

Air Quality Index (AQI)

Air Quality Index (AQI) calculation:

$$I_{p} = \frac{I_{Hi} - I_{Lo}}{BP_{HI} - BP_{Lo}} (C_{p} - BP_{Lo}) + I_{Lo}.$$

Where I_p = the index for pollutant p

C_p = the rounded concentration of pollutant p

BP_{Hi} = the breakpoint that is greater than or equal to C_D

BP_{Lo} = the breakpoint that is less than or equal to C_p

BP_{Hi} = the breakpoint that is greater than or equal to C_D

I_{Hi} = the AQI value corresponding to BP_{Hi}

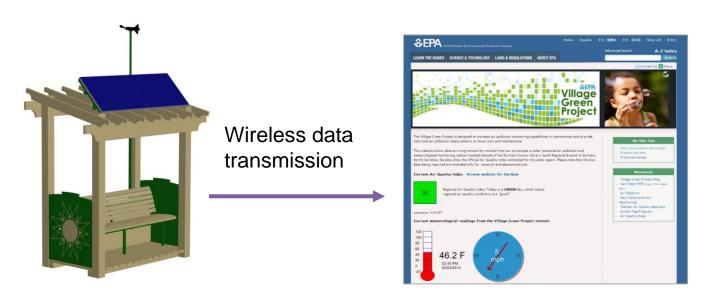
I_{Lo} = the AQI value corresponding to BP_{Lo}

Brea	kpoint		
O ₃ (ppm) 8-hr	PM _{2.5} (µg/m ³) daily	AQI	Category
0.000 –	0.0 –	0 –	Good
0.059	12.0	50	
0.060 –	12.1 –	51 –	Moderate
0.075	35.4	100	
0.076 – 0.095	35.5 – 55.4	101 – 150	Unhealthy for Sensitive Groups
0.096 –	55.5 –	151 –	Unhealthy
0.115	150.4	200	

AQI Level Comparison

	Ozo	one	PM _{2.5}		
AQI Level	AIRS (days)	VGP (days)	AIRS (days)	VGP (days)	
Good	242	237	172	161	
Moderate	5	3	52	36	
Percent of identical level (%)	97		88		

Performance Assessment Summary


- The VGP design was useful and promising for near-source community air quality monitoring.
- Comparison to nearby regulatory ambient air monitoring stations revealed good agreement in general for ozone and PM_{2.5} over a range of environmental conditions across multiple seasons.

Future steps: advancing beyond prototype

Starting place:

- Proof of concept prototype: Single system installed in Durham, NC
- Power system designed for NC solar conditions
- Website supporting one data stream

Village Green Project II

Point of contact: Esteban Herrera Herrera.Esteban@epa.gov

VGP II Goals:

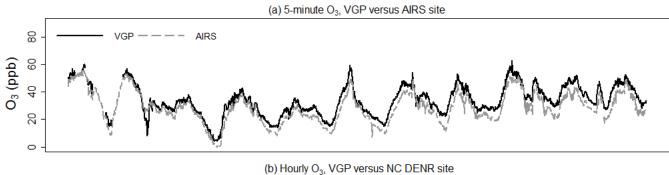
- Expand on prototype for increased system capability and additional sensors
- Partner with states and communities
- Increase transparency through public access to real time data from multiple data sets
- Utilize AirNow and share IT services with increased data capacity
- Flexibility for long term expansion

 platform design with capability to supplement and flexible to allow for interchangeable parts

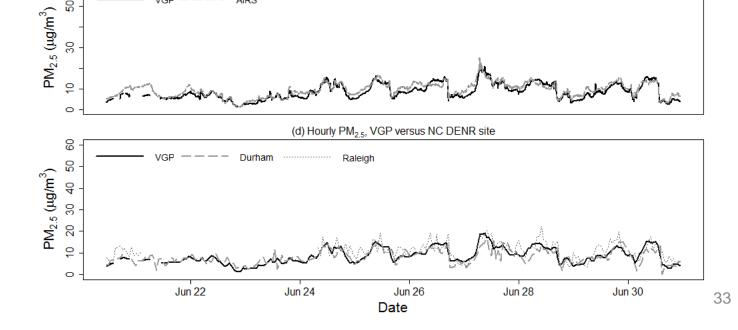
Village Green Project II

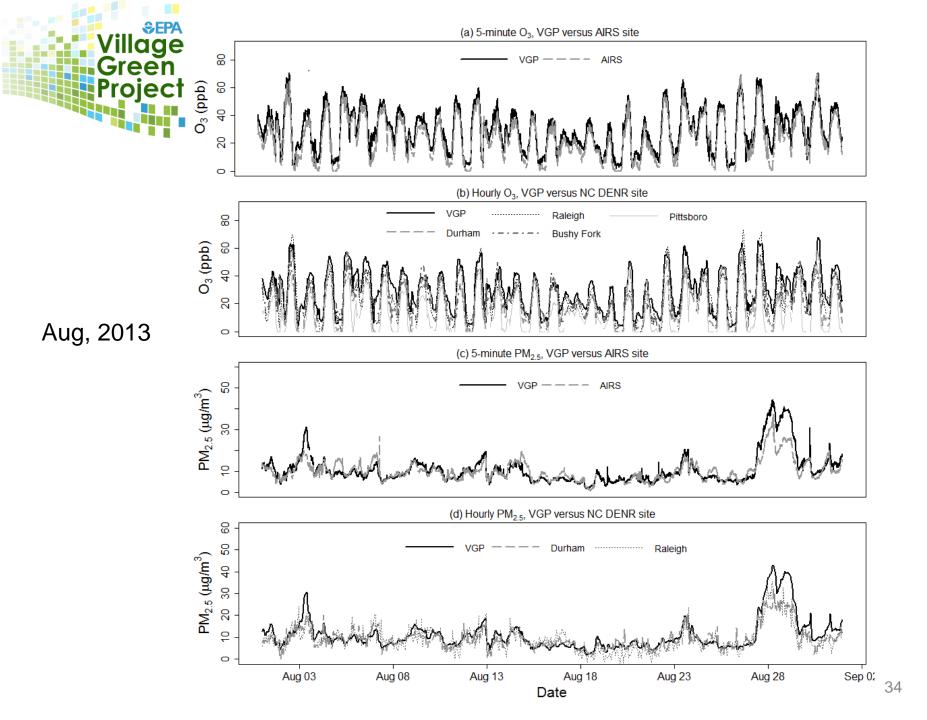
- Multiple stations installed with state partnerships
- Enhanced design options cold weather durability and upgraded power (solar plus small wind turbine) for northern climates
- Evaluation of potential added measurements beyond ozone and PM_{2.5}: NO₂
- Design package to support technology availability
- New back-end support by AirNow, with development underway to support high time-resolution data
- Website re-design to support real-time data viewings for multiple locations

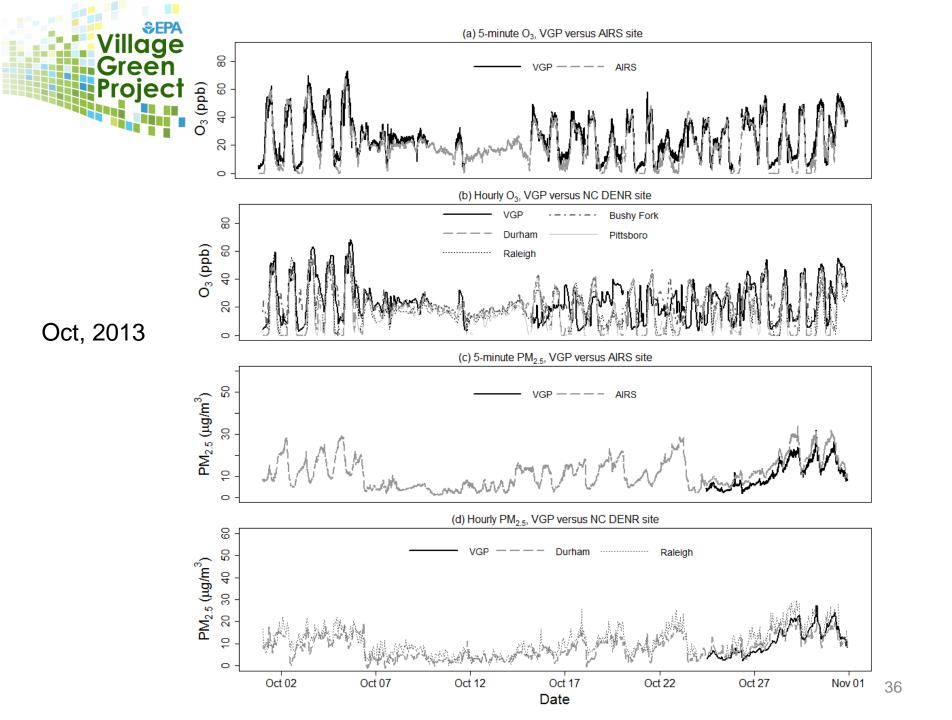
Acknowledgements

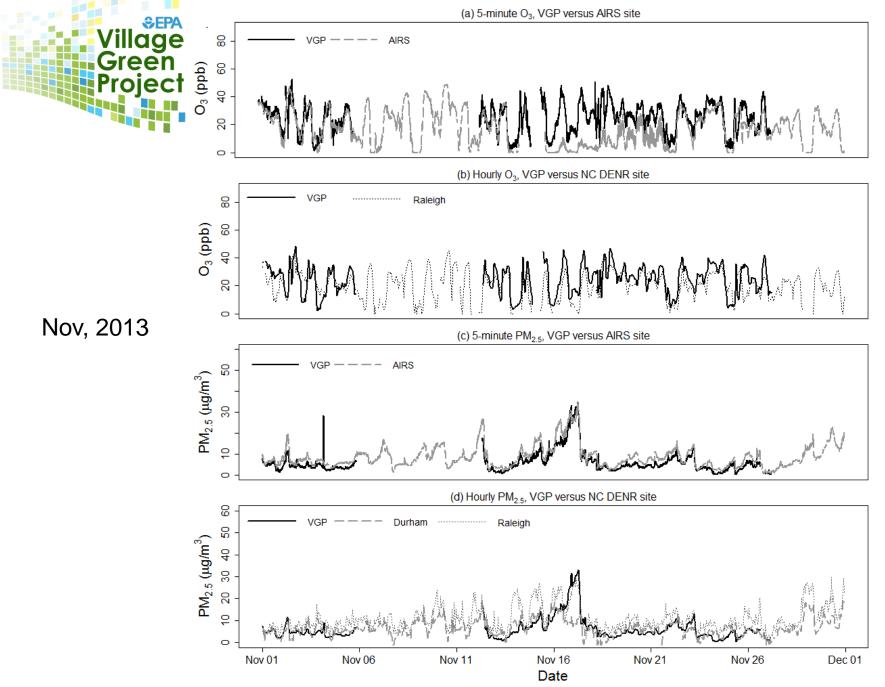

Many many individuals supporting and contributing to the Village Green Project!

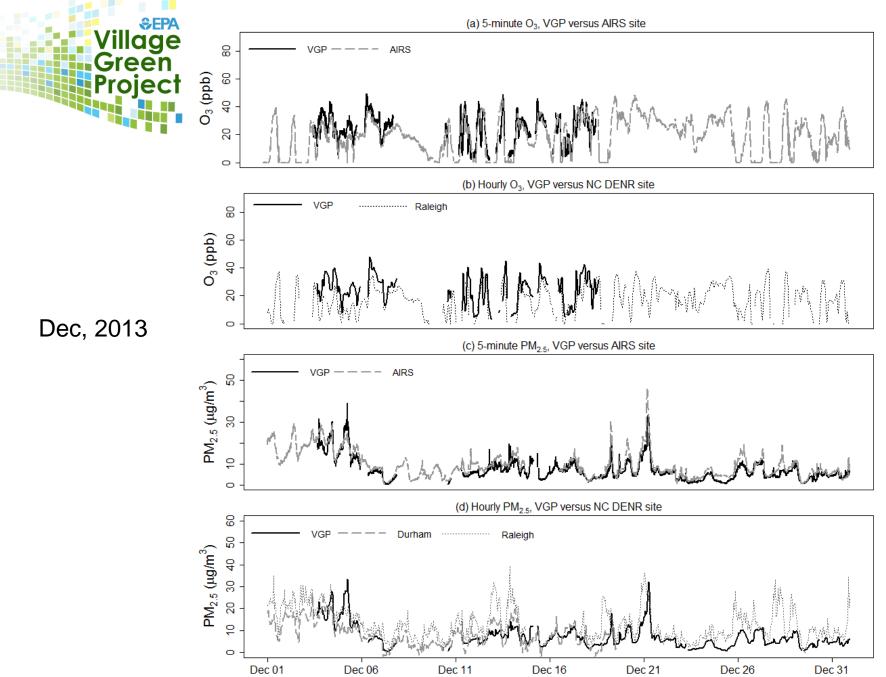
- MOU, communications, technical support, quality assurance, lab/ACE support for station: Kelly Leovic, Bill Mitchell, Dana Buchbinder, Ann Brown, Eben Thoma, Renee Marshall, John Masters, Rachel Clark, Robert Wright, Paul Groff, Richard Shores, Doug McKinney, Frank Princiotta, Tim Watkins, Dan Costa, Lindsay Stanek, Carlos Nunez, Jewel Morris, Jacques Kapuscinski, Solomon Ricks
- ARCADIS: Drew Knott, Aaron DeBlois
- CGI: Mike Tumbarello, David Crawford, Stephen Jackson
- Durham County: T. Che Anderson, Tammy Baggett, Sandra Lovely, Jennifer Brannen, Kathleen Hays
- Potential new efforts to expand VGP: Esteban Herrera, Phil Dickerson, John White, Ron Evans, Lewis Weinstock, Stacey Katz, Gail Robarge, Peter Preuss
- NC DENR for providing the comparison regulatory data: Wayne Cornelius, Vitaly Karpusenko

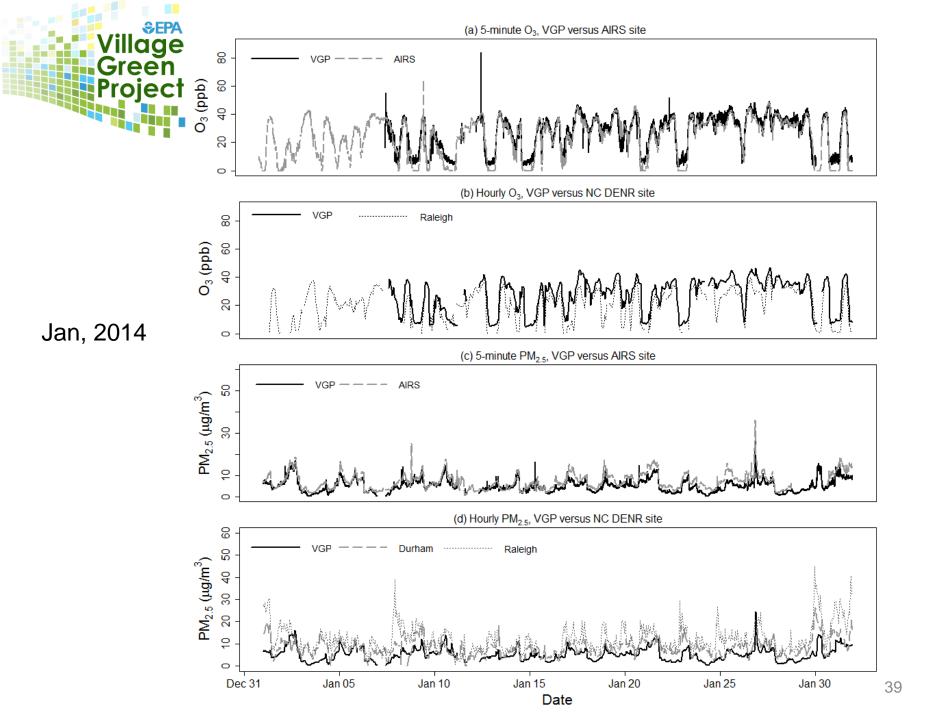

Appendix

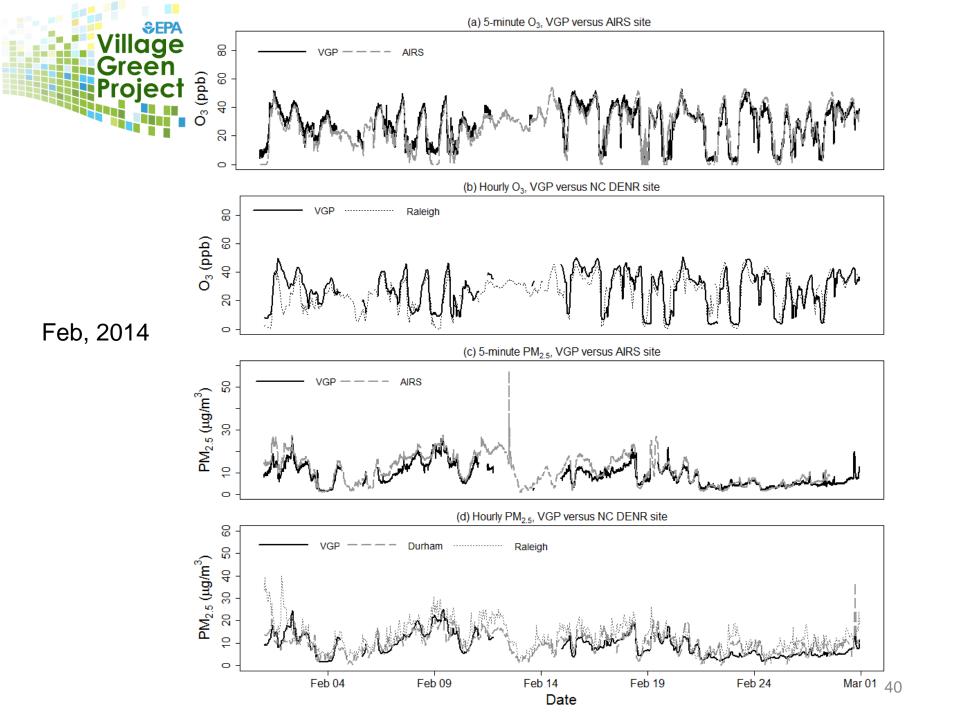


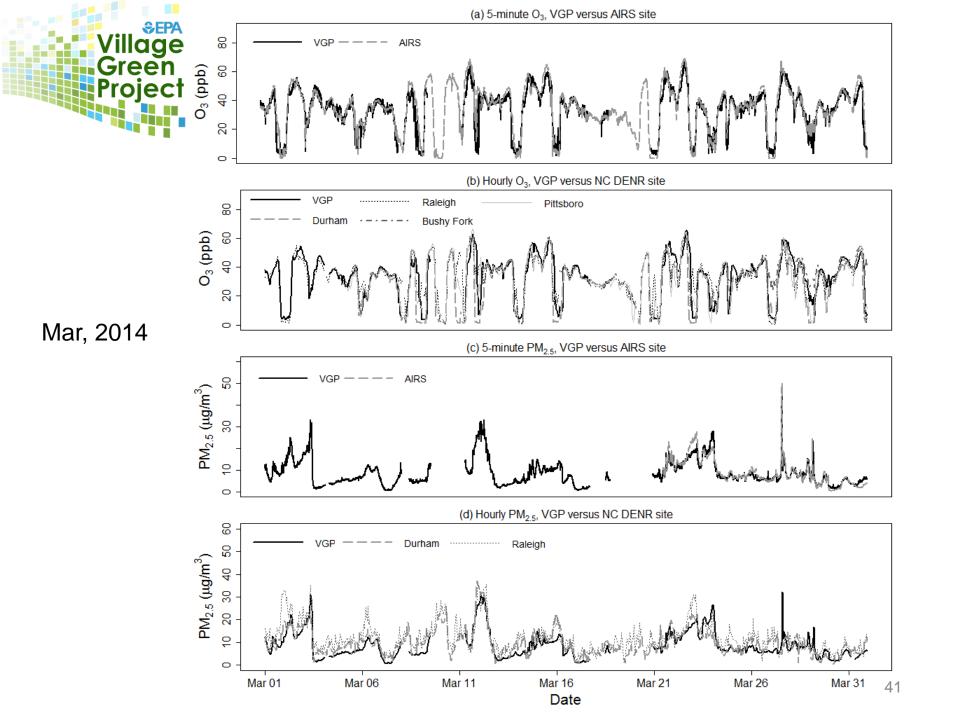



(c) 5-minute $PM_{2.5}$, VGP versus AIRS site


Jun, 2013







Date

